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Results

Introduction

Wind tunnel testing is routinely used to study various aerodynamic phenomena and determine aerodynamic
parameters of engineering structures. However, the required design aerodynamic coefficients for a complex
shape may not always be available from the wind tunnel testing or standards. In the last decade, a
computer-aided computational fluid dynamics code has been widely used in fluid mechanics for simulation
of complex structures. Computational Fluid Dynamics (CFD) provides a quicker and virtually a free
alternative to modeling complex systems in comparison to wind tunnel testing.

The primary objective of this study is to verify and develop aerodynamic coefficients for multisided
cylinders, in particular, drag coefficients (Cp) using CFD (ANSYS-CFX) [1]. There are numerous numbers
that describe the regime of flow, one dimensionless hydrodynamic numbers that directly describe flow past a
structure is the Reynolds Number (Re). Reynolds Number is classified as a ratio of inertial forces to viscous
forces which enumerates the relative importance of the forces inflicting the object or structure. Drag
coefficient (Cp), indirectly related to the Reynolds Number, is a dimensionless quantity that is used to

guantify the drag or resistance of an object in a fluid environment, such as air in this study.
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The output will be able to predict buffeting loads for the fatigue design of multisided cross section slender

support structures without field or wind tunnel test, which costs much more compared to computer
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Figure 4: Solution Convergence



