
Virtual Reality Visualization with the Oculus Rift
Nicholas Wereszczak

Department of Computer Science, Tagliatela College of Engineering
Dr. Alice Fischer

Abstract
Virtual reality has always been considered a way of the future and was only seen as an application for video games. Today,
there has been development of video games that use the virtual reality technology, but it has come to light that this
technology can be used for many other purposes, including academically. This project took his new technology and started a
foundation for use in new learning applications and new and improved views on existing data. The Oculus Rift was the tool
used to view VR worlds in this project along with the use of a MacBook Pro; however, any laptop with a graphics card can
be used with the Oculus Rift. Using the Oculus Rift’s software development kit (SDK), a computer program was written to
read data and present it in a three-dimensional space. In addition to being able to read data and display it in a graphical form,
user entered input can be used to create custom graphs and images.

Introduction
 In today’s world, there are many programs that
allow you to view images in three-dimensions, but only on a
flat screen. This project allows the user to feel like they are
in the same space as the image they are viewing. This will
allow for a deeper understanding of data. People that learn
visually will be able to have a clear picture of what is trying
to be represented.
 This research explored the use of virtual reality for
learning application. The overall objective of this project
was to create a program that could pave the way for new
technologies to be used in the academic community and to
explore new possibilities using this new technology.
Specific goals included being able to learn and understand
the Oculus Rift, develop a technique to express data into a
series of coordinates in three-dimensional space, as well as
to discover, experiment, and pave the way for new and
future technologies.

Materials
 A few pieces of hardware were necessary for this
project; the Oculus Rift device to be able to view the virtual
reality that was used as shown in Figure 1, and a MacBook
Pro to run the written program and the Oculus Rift SDK.

Figure 1: Oculus Rift Headset

 After these devices were ordered, an overall design
was made for the project to determine what other materials
would be needed. The original design showed that there

would only be one way for the user to observe the data
being presented.
 The Oculus Rift headset and the Oculus Rift SDK
both included tools that would allow the programmer to
track head position. This seemed like an issue for users who
wanted to be able to rotate and observe the data from
different angles. It was then deemed necessary that a
connectable controller, shown in Figure 2, should be added
to increase ease of use. This created two types of input for
movement, which is shown in Figure 3.

Figure 2: Connectable Controller

Figure 3: Inputs into Application

 After the hardware side of the design was finalized,
the software side was considered. The Oculus Rift SDK
was analyzed, and it was determined which additional
software was compatible with the current SDK.

 First, the programming language was decided.
There were only a few compatible languages that could have
been used, but it was decided that C++ would be a good
language to choose. It was chosen because most of the pre-
written programs were in C++ and there are many graphical
libraries available to help transform the data into graphs.
 A few integrated development environments (IDE)
were considered. Code::Blocks, NetBeans, and Visual
Studios were all condisered and are compatable with C++.
Since a MacBook Pro was being used, Xcode was also
available as an IDE, which meant Visual Studios was not.
Xcode was chosen due to its well-known debugging
assistance and that many example projects were pre-created
for Xcode.
 The next step was to look at the available 3rd Party
libraries that would help create the virtual reality worlds.
Many were available, so an example project was examined
to see what libraries were used and what libraries would be
useful to the project. A few libraries were decided on. The
ones that were used in this project were, OpenGL, glew,
glm, and zlib. These 3rd Party resources were open source
and can be found online.
 The software and hardware were tested with the
examples given within the Oculus SDK to check
compatibility. After both the hardware and the software that
would be used were finalized, the research began.

Research and Input
 After the Oculus Rift was ordered and the design
was finalized, the first week and was spent doing research
on the Oculus Rift SDK. A manual was given with the
download of the software kit and more research began.
 At the start of the project, the demo and example
code was studied and learned. This was done in an effort to
simplify what was being looked at in the code, and what
code would become a useful tool in the project goal.

Code to control and interpret a connectable
controller was found, studied, and saved so that later on it
could be integrated into the design. Most of the given code
was in C++, however some of it was in Objective-C, which
took longer to decipher.
 After an understanding for the Oculus Rift SDK
and how to change and control the camera, the early stages
of research were completed. It was then determined how
the data would be implemented.
 Two ways were considered for entering data. The
user would be able to enter information directly into the
program or information could be read from a text file. It
was decided that reading from a text file would serve the
application efficiently. For this project, two different types
of data were entered. They were stored in different ways.

A tree structure was used to store information that
was generated randomly in the program and to store large
amounts of data if some was input, shown in Figure 4. This
seemed like the simplest way to store data and be able to
draw it in a unique way. A modified and simpler version of
a binary search tree (BST) was used. Data was read in and
placed into the modified BST.

 The data that was small and custom-entered was
sorted in a Flex array, shown in Figure 5. A Flex array is a
modified vector data type and was created by Dr. Alice
Fischer. It was implemented by the use of her Flex
Template, flexT.h.

Figure 4: Tree File (Large) Figure 5: Non-Tree File (Small)

Drawing Algorithms
 Two drawing algorithms were created to generate a
three-coordinate plane. The algorithm used to draw the
smaller graph to three-dimensional space has multiple parts.
It starts off with a creation of a new type, node.
 Node has three properties. The first is an integer;
named index, which holds the number of that node. The
index increments every time a new node is appended. The
second property is a glm::vec3, named locs. Locs holds the
location of the current node within three-dimensional space.
The third property is an array of all of the indexes of the
nodes that the current node is connected to. This is used to
draw the lines in the three-dimensional space.
 The algorithm creates a Flex array of nodes. It first
reads in each node and appends its name to a list. The
algorithm then creates a new node with index 0 and appends
this node to the Flex array of nodes. Each time a new node
is read from the text file it checks to see if the name has
already been read, to prevent duplicates, and then appends it
to the Flex array of nodes.
 The algorithm then proceeds to the part of the text
file where the connections are being shown. It appends the
appropriate indexes to the correct node-connects array.
Later, when drawing in the three-dimensional space, it uses
the locs vector and the connections array to draw the nodes
and their “connections”, or “lines”, to the other nodes.
 The second algorithm used to draw the larger graph
in three-dimensional space was not as complicated. When
reading from the tree text file it reads in a number that is
inserted into the tree structure using the original BST
algorithm. After all the nodes are inserted into the tree, the
function preorder() is called and creates and stores locations
for each node compared to the last. The first node has the
location (0, 0, 0) and then every node after is referenced
relative to that. The basic point of the algorithm is to make
a two-dimensional structure display in three-dimensions.
The idea behind it is that for every 6th node, a –z coordinate

is added to switch the direction of the tree, and every 4th
node, a +z coordinate is added to switch the tree back. The
code for this algorithm is shown in Figure 6.

Figure 6: Store Location Algorithm

Results and Discussion
 In the end, a basic foundation was created for
interpreting data and transferring it into three-dimensional
space. The output was impressive. It accomplished the goal
to transfer data and to be able to view data in a new way. In
Figure 7, a small custom tree is drawn from the given input
from Figure 5. In Figure 8, a binary search tree is shown
after being drawn in three-dimensional space using the
algorithm in Figure 6.
 The data was clear, and when used with the Oculus
Rift headset and controller, it created a new experience for
the user. Wearing the headset was a different experience for
many and showed the potential for future applications. The
specific goals were met and the project can now be easily
improved with the help of the mentor and researcher.

Figure 7: Small Simple Custom Graph

Figure 8: Large Complex Tree Graph

 New researchers in this field will be able to save
time by examining this project’s simple application that has
been pieced together out of the Oculus Rift SDK. Some
new technologies that can be created from this are, for
example, chemistry and biology molecule representation
and three-dimensional building projects that convey the
feeling of walking around a building before it has been built.
Another example would be to depict cells division, or
osmoses, as a mini clip and watch the process as if it was
right in front of you. There are many more applications.
 The project however, was not perfect. A few
improvements could be made by our successors. Work
would be needed on the joystick controls on the software
level. This would help the user-interface immensely. Work
would also be done to have multiple graphs drawn in the
same three-dimensional world.
 One problem that came up during the design was
that real data was way too big to process on a small laptop.
If more processing power and faster graphics were
available, then a more detailed and larger graph could have
been created. This could also lead to better performance
and response time when the application was being used.
Another benefit would be that the mini clips, as mentioned
before, could have more detail and run more smoothly.
With enough processing power users might even be able to
manipulate and change variables in real time.

Conclusion
 Overall the project was a success. The project used
the Oculus Rift headset and the Oculus Rift SDK. A great
understanding of virtual reality was developed, and of how
it can be implemented. OpenGL along with other graphical
software libraries were learned, which could be used with
other languages in the future. One specific goal that was
accomplished was the ability to have users enter personal
data to see their own graphs and change the shape and color
of the nodes. The most important goal of creating a
foundation for the new and upcoming applications in this
field was completed in hopes someone will take this project
to the next level.

References
1. Oculus Rift [Web Photo]
http://upload.wikimedia.org/wikipedia/commons/a/ae/Oculu
s_Rift_-_Developer_Version_-_Front.jpg
2. Logitech Controller [Web Photo]
http://gaming.logitech.com/assets/47832/f310-gaming-
gamepad-images.png
3. Oculus SDK - Version 0.3.2 Preview 2
https://developer.oculusvr.com/?action=hist&ver=16
4. OpenGL SDK – GLEW/GLM Library
http://www.opengl.org/sdk/libs/
5. zlib SDK – zlib Library
http://www.zlib.net
6. Project Setup and Reference from sample project
https://github.com/OculusRiftInAction/OculusRiftInAction

Acknowledgments
 I would like to thank both my research advisors
and mentors, Dr. Christopher Martinez and Dr. Alice
Fischer, for their knowledge and support throughout the
research. I would also like to thank Mark Morton, who
helped find certain hardware that was necessary for
compatibility between devices. I would also like to thank
UNH’s SURF program for making my research a reality. I
would also like to thank the Carrubbas for their generous
donation and for keeping the SURF program running every
year. I would also like to thank everyone else involved in
the SURF program that helped me with my research. A
special thanks to everyone who keeps this program running:
you help students realize their potential and get the
experience they need.

Biography
 Nicholas Wereszczak is majoring in Computer
Science and is a junior at the University of New Haven.
Nicholas is also a teaching assistant for Intro to C
Programming at the University of New Haven and a
member of the UNH programming team. In addition to his
love for computer science, he also enjoys swimming, IEEE
club meetings and hanging out with his close friends.
 The research from this project helped Nicholas
improve his programming skills immensely and he is glad
that he has been given this opportunity. It also gave
Nicholas helpful experience to use in graduate school.
Nicholas is interested in graduate school, but not yet sure
where he would like to study or what type of Computer
Science he would like to concentrate in. However, he did
greatly enjoy using visual and graphical SDK’s.

